The realization space is [1 1 0 1 0 1 1 0 1 1 1] [1 0 1 3*x1^2 + 8*x1 - 4 0 1 0 1 3*x1^2 + 8*x1 - 4 x1^2 + 3*x1 - 1 x1^2 + 3*x1 - 1] [0 0 0 0 1 1 1 x1^2 + 2*x1 - 1 x1^2 + 3*x1 - 1 x1^2 + 3*x1 - 1 x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^3 + 2*x1^2 - 3*x1 + 1) avoiding the zero loci of the polynomials RingElem[x1^2 + 3*x1 - 2, x1^2 + 2*x1 - 1, x1^2 + 3*x1 - 1, x1 + 3, 2*x1 - 1, x1^3 + 4*x1^2 + 2*x1 - 2, x1 - 1, x1^4 + 3*x1^3 + x1 - 1, x1^4 + 3*x1^3 + x1^2 + 3*x1 - 2, 2*x1^2 + 5*x1 - 4, x1^2 + 2*x1 - 2, x1^4 + 5*x1^3 + 4*x1^2 - 6*x1 + 1, 2*x1^4 + 9*x1^3 + 5*x1^2 - 10*x1 + 3, x1^4 + 5*x1^3 + 4*x1^2 - 6*x1 + 2, x1^2 + 4*x1 - 2, 3*x1^3 + 6*x1^2 - 10*x1 + 3, 3*x1^2 + 8*x1 - 5, x1, 3*x1^2 + 8*x1 - 4, x1^4 + 5*x1^3 + 2*x1^2 - 10*x1 + 3, 2*x1^4 + 9*x1^3 + 6*x1^2 - 8*x1 + 2, 2*x1^2 + 6*x1 - 3, 3*x1^4 + 17*x1^3 + 15*x1^2 - 25*x1 + 7, 3*x1^4 + 14*x1^3 + 7*x1^2 - 21*x1 + 6, 3*x1^4 + 14*x1^3 + 8*x1^2 - 19*x1 + 5, 3*x1^4 + 14*x1^3 + 7*x1^2 - 21*x1 + 7, 3*x1^3 + 5*x1^2 - 7*x1 + 2, 4*x1^2 + 11*x1 - 6, x1 + 2, 3*x1^4 + 14*x1^3 + 9*x1^2 - 16*x1 + 5, 3*x1^4 + 14*x1^3 + 8*x1^2 - 18*x1 + 6]